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Orbits about the Sun-Earth L 1and 12 libration points have becorie very popular for space
physics and astrophysics missions. Due to the hyperbolicity of the region of phase space
where these orbits are found, they are difficult to compute and analyze. 7he invariant
manifold structure provided by dynamical systems theory have been useful to compute
transfer trajectories between orbits. These methods are very promising and require further
development. This systematic approach is a greal improvement from the difficult and
/abor-intensive numerical search methods current/y popular in the astrodynamics commu-
nity for studying these orbits. 1 he geometric constraints and mission critical issues are
discussed fo give the numerical dynamical systems community some insight into the prac-
tical considerations and important problems of interest to the space mission designers. It
is hoped that this communication will lead to mom fruitful exchanges between the two
communities.

1. The Three Body Problem and Space Missions

1 he Three Body Problem has intrigued some the greatest minds of the last three centuries and has stimulated
the development of science as few problems have. I-he crowning achievement is the qualitative method
introduced by Poincare from which moden dynamical systems theory is derived. T he advent of the computer
age brought in a new revolution whereby previously undreamed-of numerical experiments can be performed by
the stroke of a few keys. 1 his blurred the distinction between quantitative and qualitative methods in the
following sense. Qaulitatitve methods not only provide a global understanding of the dynamics but now serve
as essential guides in the numerical computations of dynamical quantities.

Parallel with the development of computers, space exploration also took its first steps in the past 50 years.
Suddenly, the formerly important but academic three body problem is discovered to have practical significance
for space missions. On August 12,1978, the International Sun-t:arth Explorer-3 (ISEE 3) was launched toward
the interior Sun-Earthlibration point, 1.1, and inserted into & “halo orbit” around L 1 under the direction of Dr.
Robert W. Farquhar. Now periodic orbits and quasiperiodic orbits of the three body problem have taken on a
completely new significance. They have become "praclical and usefule™. Along with utility comes the engi-
neering issues and all the complexities of actually flying such a mission.

However, there is currently a gap between the astrodynamics and dynarnical systems communities. The pur-
pose of this paper is to narrow that gap by introducing the problems and methods to both communities. 1 hereby
it is hoped that an exchange of ideas between the two would follow resulting in collaborations and new devel-
opments in the theory and applications of the three body problem to future space missions. While quasiperiodic
orbits about the libration points are extremely useful for current space missions, their significance for the ex-
ploration of the solar system has only been glimpsed.

2. Orbits Around L1and 1.2

For the purposes of this discussion, it suffices to use the circular restricted three body problem (RTBP). In this
model, the two primary bodies are moving in circular orbits aboul their common center of mass and the infint-
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essimal third body moves uder the gravitation of the primaries without exerting any gravitational force on the
primaries in return. Fig. 1 depicts the Sun-t arih-Spacecraft system in rotating coordinates with the origin is at
the center of mass; the X-axis containing the two primaries with the Sun to the left and the Earth to the right, the
Z-axis is normal to the Ecliptic, the orbit plane of the primaries, and thi¢ Y-axis completes a right handed coor-
dinate system. Euler discovered three collinear equilibrium solutions on the X-axis, labeliedL1to 13.
Largrange discoverd the two equilateral triangular equilibrium solutions, labelled L4 and L5. The labelling
convention used here is the most prevalent in the astrodynamics Community, although by no means standrad.
The equilibrium points are collectively known as the libration points or the L agrangian points.

T he equations of motion is as follows:
X**-2y '=ux
y ” - 2 X ’ = Uy

z- = Uz
where

u =12 (x*24y"2) 4+ (1 -myd + mir

m = normalized mass parameter of the Farth-Sunl /(S4L),

d = distance of the infinitessimal mass to the first primary,
Pi=1[ (x4m)*2 + y"2 + zA2]M/2

r = distance of the infinilessimal mass to the second primary,

P2 = [ (x-14m)A2 + y*2 + z72]M/2

I'he normalization sets the sum the mass of Pl and P2 to 1, the distance betweenP1 and P2 to 1, and the
angular rate of Pl and P2 around one another to 1 (period 2 Pi). See Szebehely for the derivation.

L1, L2, and L3 are unstable equilibria, while 1.4 and L5 are stable equilibria for planetary mass ratios (see
Szebehely, 5.5). We will limit our discussion to 11 and L 2 in this paper since the other libration points are
currently not as useful for space missions.

Linear analysis about L1and L2 indicates that there are two families of periodic solutions for the linearized
system - planar periodic oribts and vertical simple harmonic motion:

X = -A Cos{at+ f),
y=k(a) ASin (at4 f),
z= BSin(bt+ g),

Both the family of periodic orbits of the linearized system may be continued to periodic orbits in the RT BP.
These “modes” may be combined to form quasiperiodic orbits aboull1 and 1..2 known as lissajous orbits as
their YZ-projection is the familiar lissajouspattern. When the Y-amplitude, k(a)A, reaches a certain size (about
645,000 krn for the Sun-Earth syslem), depending on the mass parameter, the frequencies a and b become
commensurate thereby producing a periodic orbit known as a halo orbit. Note that this is very far from the
libration point and well beyond the region of validity for the linear expansion. This periodic orbit comes about
from higher order nonlinear effects through a relation between the amplitudes A and B. Thus for halo orbits,
there is effectively only one amplitude. 1 here are also large quasiperiodic orbits on tori around the halo orbits
also known as lissajous orbits. In the Sun-Earth system, all of these orbits have periods of about 6 months. All
of these orbits are unstable except for very large amplitudes where there is a narrow region of stability. For the
Earth-Moon L1, for 73,000 km <B <74,5010 km, there is aband of stat>le halo orbits (Breakwell and Brown).
Plots of the various projections of the lissjous orbits are: given in Figures 2 and 3 at the end of the paper.



3. Why Libration P>oint Missions?
Why are libration point orbits useful 1o space missions? Why is there suddenly so much interest?

11 is in a sentinel position between the tarthandthe Sun. “1 his is an ideal location for solar-terrestrial exper-
iments such as the ISEE3, SOlar tleliospheric Observatory (SOt {0), Advanced Composition Explorer (ACE)
and Suess-Urey Discovery (SU) missions (see list at end of section for brief description of missions). An orbit
about L 1 provides continuous viewing of the Sun and the scalar wind outside the geomagnetosphere, a contin-
uous link to the tarth, a constant thermal environment, and constant power for spacecraft through the solar
panels. Similarly, an orbit about L? is ideal to study the geotail anti its interaction with the solar wind such as
for the GE-OTAIL mission. And there is an easy and inexpensive heteroclinic transfer orbit from an orbit about
L 1 to an orbit about 12 requiring no more than & months for tfransfer. figure 2 plots the three projections of the
orbit for the SU mission currently being proposed 10 NASA. T his is a large amplitude lissajous orbit. 1 he goal
of SU is to collect and return samples of the epheniral solar wind particles in an orbit around L1. The orbital
dynamics and mission design will be discussed in the next section.

The 12 region is ideal for astrophysics expariments such as thef ar infraRed E xplorer Mission (F IRE) and
Primordial Stuctures Investigation Mission (PSI). An orbit aboutl 2 provides a stable and cold environment
perfectly suited for infrared and microwave telescopes. More than half of the celestial sphere is available at all
times for observation so that in 6 months' time, a complete survey of the sky can be made. Similar to the L1
situation, the communications geometry, the power and thermal environment are nearly constant here. Figure
3 plots the three projections of an orbit for both the FIRRE- and PPSI. 1 hese missions are cosmic microwave
background (CMB) radiation experiments following in the footstep of the: famous COBE Mission which deter-
mined the anisotropic clumping of matler in the universe. ‘1 he instruments to detect CMB radiation (around 3
deg Kelvin) need to stay very cold hience a small lissajous orbit around L 2 is ideal. In contrast, the COBE
mission used anh orbit around Earth. Note also that a lunar swingby was used to steer the spacecraft into orbit
around 12 for PSl and F IRE.

Why is a constant environment so important? F rom the science point of view, it is highly desirable to have all
observations made in a constant environment to reduce error sources and uncertainties which simplifies the
data reduction, generally a massive task in itsell. | rom the instrument and spacecraft point of view, a constant
environment is less stressful on the hardware, much easier to design and trouble shoot should anomalies occur.
From the operations point of view, a constant environment greatly simplifies planning activities both before and
after the launch. Of course, this elegant solution ultimately translates 10 lower cost and greater savings in
almost every aspect of the entire mission life cycle.

Compare with a typical low Earth mission with a peiord of one to two hours. Within every period, the Earth
occults the Sun; this changes the temeprature and the resulting stress causes jitler in the instruments. While
in shadow, batteries must supply the necessary power; tliisincreases the spacecraft mass and complexity.
Depending on the mission one may or may notwant to see the Sun. Infrared telescopes typically require
sub-kelvin coolers and the telescope boresight must always be 80 to 90 degrees away from the Sun and the
Earth’s limb. Add to this the constantly and quickly changing communcations geometry and you have less than
50% of the time where you can make observations per orbit. The constant slewing of the telescope to avoid
the Sun and Earth, or pointing of the antenna for communcations all add to a highly labor intensive and complex
mission operations which is more costly.

Another driver which favors libration point missions in the current environment is the ease with which the orbit
can be achieved in comparisori with other interplanetary missions. A directlaunch from Earth to a halo orbit
requires about 3 months. The transfer for & mission to Mars requires about 1 year, to Jupiter requires about 3
years, and to Pluto about 10 years. ‘1 he launch energy to achieve a halo orbit is less than that for a mission to
orbit the Moon. The launch energy is meastired by a quantity called C3 equal to twice the keplerian orbit
energy. (The origin of the term C3 is unkown, but the constant of the vis-vivaintegral, E quation 19 of Section
87, in Moulton’s “An Introductionto Celestial Mechanics” is called C3 anti is likely the source of this
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terminology.) For halo orbits, the C3 is -0.6 (krivsec)?2, the neagative sign indicating that it is still bound to the
E arth.f or a direct Mars transfer, the C3 is around 10; for Jupiter, the C3 is around 60, for Piuto, it's around 200.
1 bus, it takes less time and less launch capability to get to a halo orbit than fOr almost any other interplanetary
mssion. ‘1 his translates to lower launch cost which is always a significant parl of the overall mission cost.

F“or this discussion, all costs exclude the launch vehicle and arc in 1995 dollars. 1ypical mission costs have
dropped from the billion dollar range to as low as $35 million in some cases A few of the libration point missions
we have proposed are in the $60 to $100 millionrange. ‘1 hese factors, combined with the current detector
technology which enabled some of these new mission concepts, have broughtlibration point trajectories to the
forefront of space physics and astrophysics missions. Table 1 at the end of the paper lists the current and some
of the proposed missions using libration poini trajectories.

4. Trajectory Design Issues

In general, finding individual lissajous and halo orbits is not difficult. By exploiting the symmetry of halo orbits
with respect to the xz-plane, one can easily find a halo orbit iteratively. Pick some point (x,0,z) near L1 or 1.2,
pick an initial velocity (0,v,0), the form suggesied by the symmetry, and integrate the equations of motion.
Change v slightly until a periodic orbit is achieved. Both x and z may need to be moved about since these orbits
are not dense in space. Using the variational equation, 8 newton scheme can quickly find these orbits provided
a very good initial guess is given, Lissajous orbits do not have this symmetry property and are found by parallel
shooting methods (Howell &Pernicka). 1 heinitial guess is provided by a third order Linstedt-Poincare expan-
sion for lissajous orbits (Richardson). SImo's group have computed these series to order 35 with various
models providing extremely accurate solutions {Simo, Gomez,L.lbre, and Martinez).

A Missionto L 2

I-he challenge is in finding an orbit with useful properties, We examine some astrophysics missions at L2. The
PSI and FIRE spacecralts are designed to spin slowly around an axis pointed at the Sun (Lo, Howell, and
Barden). The instruments are mounted perpendicular to this axis s0 the boresight is always 90 deg away from
the Sun and the E arth and is never exposed to their radiatiorn. As the spacecraft slowly spin about this axis, the
instruments map out a great circle swathof the celestial sphere, mapping the entire sky in 6 months. The
antennae and the solar panels are fixed at the’ back of the spacecraft which is always pointed at the Sun.
However, the antennae have a narrow beamwidth and the data rate is high enough that a small lissajous orbit
must be used in order to guarantee the dala rate without the need to steer the spacecraft from its Sun-pointed
orientation (a fixed antenna is not pointable except by moving the entire spacecraft which is undesirable for
these mission geometry constraints). 1 hus @ small amplitude (120,000 km)lissajous orbit was selected. T he
amplitude is like the maximum radius of the orbit. BBut, the problem with srali lissajous orbit is that it requires
about 100 to 150 m/s of delta-V (change in velocity using thrusters and propellant) to insert into the lissajous
orbit. Since the total propellant capability of the mission is about 200 m/s post-launch, this is significant. A lunar

swingby is used to reduce this insertion delta-V to 15 nv/s following the design for the Russian RELICT 2 Mission
(Dunham).

A Missionto 1.1

We examine, next, a solar physics missionto 1.1. The SU Mission (1 o, t lowell, and Barden) will spend two
years in a large amplitude lissajous orbit about { 1to collect samples of the solar wind and then bring it back to
earth. Unlike the astrophysics missions, it has very litlle data to downlink so the antenna pointing is not a
problem. Consequently, it can use a large lissajous orbit (300,000 km Z amplitude, 700,000 km Y amplitude)
which lowers the delta-V required to inserl into the lissajous orbit to a negligible 5 m/s. (The ISEE3 halo orbit
is 120,000 km by 666,000 km in the corresponding amplitudes. ) Howevet, the return segment to Earth is a
challenge. Since the sample capsule will be captured by helicopters at a preselected site in Utah, the return
must occur during the day time to facilitate the capture. Unfortunalely, the dynamics of the problem favors a
direct return on the night side. 10 force a direct return on the dayside is prohibitively expensive and well beyond

4




the 300 /s total delta-V capability of the St spacecraft. The situation would be very different if it were re-
turning from 1 2. t lowever, we have observedheteroclinic behavior between orbits around 11 and L 2. Using
this observation, the spacecraft was sentto L 2 alter departing |.11o turnit around for E arth return on the day
side

1 he T ransfer Problem

T he transfer problem is a significant problemin the trajectory design for a mission to L.1or 12. Even without the
lunar swingby mentioned earlier, this is a difficult problem Farquhar and Dunham computed this trajectory
directly from forward integration even in tile case of lunar swingbys. Another approach is to integrate back-
wards from a halo orbit. T he instability of ttie dynamics makes it very easy to depart. However, the transfer
trajectory must connect up with a typical 200 km circular launch orbit at 28.5 deg inclination. Thus timing
becomes a problem because the real system is hon-autonomous. If one shifts the time by some amount, the
lissajous orbit is no longer “there”. Anotherlissajous orbit tust be computed to accommodate the new times.
Needless to say, the entire process is complicated and labor intensive especially when a lunar encouter is
required. T he problem is highly nonlinear and it is extremely difficult to find an end-to-end trajectory satisfying
all the constraints. 1 he optimization of the imaneuvers alongthe trajectory further complicates the analysis.
Consequently, it is virtually impossible to perform any in depth parametric studies.

1 his is a result of the lack of integrals so there are no orbital elements with which to parametrize the orbit design
space. While it is true that missions with multiple planetary flybys such as the Galileo Mission are operating in
the N-body regime, their energy is much higher *“1 he flyby trajectories are hyperbolic orbits with large positive
C3. Whereas the C3 for libration point missions is very close to O. ‘1 his low C3 is much closer in energy to thaf
of the libration points. It is in this region of the phase space that chaotic phenomena and nonlinear effects are
observed. 1 his is why conic approximations are completely unsuitable for this regime, but are excellent for
planetary flybys. In order to understand and control the dynamics around | 1 and 12, we must turn to dynamical
systems theory where great strides have been made in recent years both in theory and in applications to engi-
neering problems.

5. The Need for Dynamical Systems 1 heory

The rich structures and methods available in modern dynamical systems theory have not been seriously con-
sidered by most astrodynamicisis in the United States. Ttie Europcan Space Agency (Rodriguez-Canabal;
Simo, Gomez, | Ibre, and Martinez) and the Moscow Space Research Institute (Eliasberg, Timokhava, and
Boyarski) in the 80’s began studying the control of a spacecraft in halo orbils using invariant manifold theory.
The basic idea is to project the spacecraft state onto the stable and unstable manifolds of the halo orbit and
cancel out the unstable components with a maneuver ancf let the stable manifold bring the spacecraft back into
a nearby halo orbit on the center manifold. This approach can greatly reduce the station keeping delta-V. For
ISEE3 the actual stationkeeping was & r~u’sec/year, Itwas a propellant-rich mission with little need for
efficiency. With the stable manifold control strategy, this can be reduced by several orders of magnitude to a
few mm/seelyear. But,it requires more frequent orbit determination and maneuvers which can be costly.
Nevertheless, this strategy can be miade practical arid has spurred the community to rethink the station keeping
requirements.

Current estimates for stationkeeping near the libration points is about 4 m/s/year with maneuver frequency of
once every 4 to 8 weeks using traditional meathoos. Whether it's 4 or 8 rids/year, this delta-V requirement is
insignificant in comparison to maneuvers required for the launch error correction (requires > 100 m/s) or the
halo orbit insertion (150 inks). Despite the elegance and originality of the stable manifold control, it has not been
adopted by any mission to date. In the minds of the project managers, the benefits of this new approach is
perhaps insufficient to warrant the changes required in the mission designh and operations world to accommo-
ate this new method.

However, what they did not realize is that this approach opened up an entire new vista for mission and trajectory
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design. Invariant manifold theory can be applied to many other aspects of trajectory design besides station
keeping. It offers the possibility to paramelrize the orbit space so that entire farnilies of qusiperiodic orbits can
be investigated. It offers a coherent theory describing hitherto inexplicable phenomena. It provides intuition
and insight into the behavior of orbits that have been furzy and mysierious except to the few who have been
numerically exploring this region of the phase space. finally, this global approach is providing new handles
from which new algorithms can be and have been developed to compute precise orbits with prescribed prop-
erties as required by the mission. Thus entire families of orbits can now be systematically computed in contrast
to single orbits painstakingly conjured out of programs by tricks with slot of blood, sweat, and tear.

Here is an application of the invariant manifold theory we have used for some of our advanced mission
concepts. We call this method the stable manifold transfer.’l he launch problem has been greatly helped by an
understanding of the stable manifolds of halo orbits. Since halo orbits arc periodic, using Floquet theory, their
stable manifold can be quickly computed (Barden). By finding the point on the stable manifold closest to Earth,
a candidate trajectory can be identified for a launch trajectory. Usually, the stable manifold does not approach
the k-arth as close as 200 km. However, having identified the most favorable trajectory on the stable manifold,
we have also identified the most favorable inserlion point. By adjusting a maneuver at the insertion point and
the launch condtions, a launch trajectory can be quickly foundInthe case of the lunar transfer, one simply
looks for where the stable manifold comes closest to the lunar orbit and adjust the timing accordingly to effect
a lunar swingby. This was how the PSI and F IRE trajectoires were designhed.

It has been observed by some, incorrectly, that the stable manifold method is just backwards integration. The
stable manifold transfer algorithm provides a systematic approach to generate the initial states for the back-
wards integration, It automates what is otherwise a manual blind-search process. Furthermore, it discriminates
amongst the uncountable families of trajeclories going from the E arth to the halo orbit to provide an optimal
transfer.

Another application, mentioned earlier, is the use of the heteroclinic transfer between lissajous orbits for the SU
Mission. Prior to this approach, the intensive search for the return trajectory yielded next to nothing. Once this
connection was made, the heteroclinic: transfer method quickly produced an end-to-end trajectory which re-
turned the spacecraft to a difficult site onthe day side. Conventionalmethods used by another team of orbit
designers produced trajectories which required more dells-V and were still unable to reach the Utah site
required.

The PSI, FIRE, and SU case studies, as well as the work dorm by the turopean groups, clearly indicate the
central role dynamical systems methods play in libration point trajectory design. It is an irony of history that the
discipline giving birth to dynamical systems should now be one of the last to consider its application.
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Figure 1. Sun-Earth System in Rotating Coordinate System
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Fig.3 Suess-Urey Trajectory
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